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ABSTRACT

Multigrid methods are good candidates for the resolution of the system arising in Numerical

Fluid Dynamics. However, the question is to know if those algorithms which are efficient for the

Poisson equation on structured meshes will still apply well to the Euler and Navier-Stokes equations

on unstructured meshes. The study of elliptic problems leads us to define the conditions where a Full

Multigrid strategy has O(N) complexity. The aim of this paper is to build a comparison between the

elliptic theory and practical CFD problems.

First, as an introduction, we will recall some basic definitions and theorems applied to a model

problem. The goal of this section is to point out the different properties that we need to produce

an FMG algorithm with O(N) complexity. Then, we will show how we can apply this theory to the

fluid dynamics equations such as Euler and Navier-Stokes equations. At last, we present some results

which are 2nd-order accurate and some explanations about the behaviour of the FMG process.

1This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681, by DRET Groupe 6 under contract and, INRIA and

"R_gion Provence-Alpes-CSte d'Azur" (France).





1 INTRODUCTION

One first important element is the mesh independent convergence speed. Hackbush, in [1] for example,

proposes a demonstration of this property. It is done in the special case of an elliptic problem on

structured nested meshes. We want to evaluate the properties that we must keep in order to get the

mesh independent convergence speed when we use unstructured non-embeded meshes.

The problem to be solved is the following:

Au = f on _ convex polygonal domain
u fan = 0 (I)

u E H°(fl) and f e L_(_'I)

The discretization is a usual linear P1-Galerkin finite element. Thus, we get a discrete space _h

whose dimension is equal to Nh (number of nodes), and where the subscript h indicates the mesh

size. The resulting problem consists now in solving the linear system:

Ah uh = £ (2)

We may evaluate the discretization error thanks to the Aubin-Nitsche's theorem and usual regularity:

[[11.- Uh][L_ __ C2 h 2 [[U[[H2 '_ C3 h 2 ][f][c2 (3)

The linear system (2) may incur a lot of CPU time because of its size (large number of nodes). The

idea is then to use a second finite element subspace _H whose dimension N/./is less than the previous

one (usually H = 2h). We have then the following relationship between both spaces (also called

_Nx _ _NH

T P
_N_ ___ _V_

R

grids):

where P and R are linear interpolations (transfer operators). The iterative process can be written

as:

u_ +1 = Mhu_+Nnfn where: Mh = S'_ (I- P A_ 1 RAn) S_ 1 , Sn = I-wD'_ 1An

(5' defines the basic iterative smoother, vz and u2 the number of pre- and post-relaxations). Such

a process converges if l[Mn][ < 1. A very important property of this kind of method is that the

convergence is independent of the mesh size. In order to simplify the notations (and the study) we

rewrite Mh as the following ideal-2-grid operator [2]:

Mn = (A'_ 1- P A_ _ R)(An S_) (4)

The norms of both factors of the right hand side of the equation (4) will determine the norm of Mh:

• The smoothing property'.

[[Ah S_][ _ 1/h 2 71(u) (5)
lim _7(_') = 0

depends a lot on the basic smoothing process, and, we will not give any details.



• The approximation property is:

IIm;' - P AH 1 R II = o(h2) (6)

Let us focus on (6): it takes into account the transfer operators, and overall, represents the

difference that exists between the solution on the fine grid and the solution on the coarse grid.

A MG scheme that exhibits these properties will result in a convergence speed that is independent of

the mesh size:

Vp 3u(p) such that liMb Vh -- Uh][ < pl[vh -- Uh]]

We may notice that demonstrating the approximation property leads to the evaluation of the following

quantity:

IlPhPA_ IRrh - A-_I[

For nested meshes, thanks to (3), one can easily derive this from the following equality:

PhP = PH

On the other hand, for unnested meshes, phP is not equal to PH and this evaluation is more difficult.

Actually, it is the same as evaluating the difference between two interpolated solutions. Zhang [3],

thanks to Bank-Dupont's theory, proposes such an evaluation.

Remark: The multigrid iterative V-cycle algorithm can easily be deduced from the previous 2-grid

algorithm recursively. It maintains the convergence speed independently of the mesh size and has an

O(N log N) complexity.

In order to apply the previous result of convergence, we propose to use a Full Multigrid (FMG)

strategy (proposed by Brandt in [4]). A well known result is the one given by nackbush in [1], which

is given below:

max (hk-l/hk)" the ratio of accuracyTheorem: We note: _¢ the consistency order, C2 = _ < k < t
m _

between two solutions, S the reduction factor of the MG process, i the number of MG iterations

applied to reach the solution fit. If u_ is the solution of the discrete problem, we have:

i t_ iIla2-ukll < C_Clhk with C_-
S i

1 - C2S i"

Assuming that C2 = 2 _, we deduce the exact number of cycles in each FMG phase to solve the

lst-order problem (S _ < 1/4), and the 2nd-order problem (S i < 1/8). The number of cycles i in

each phase is constant, which leads to an algorithm that has O(N) complexity.

Once again, the relative interpolation error [1] conditions the quality of the initialization in each

phase. Thus, in order to stay close to the ideal scheme (where the different subspaces are nested), we

propose to build meshes where:

• The mesh size ratio is close to 2,

• The triangles aspect ratio is locally comparable in the whole domain.
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We havethus identified the different necessaryingredients to build an algorithm having O(N) com-

plexity:

1. A sequence of grids,

2. A basic smoother (ex: Jacobi,Gauss-Seidel),

3. Intergrid transfer operators (ex: linear interpolations),

4. MG algorithm (ex: V-cycle, W-cycle),

5. FMG strategy.

We may now apply it to more complex fluid dynamics problems such as the resolution of the

Navier-Stokes/Euler equations.

2 FLUID DYNAMICS APPLICATIONS

We recall first the formulation of the steady Navier-Stokes equations:

OF(W) Or(W) 1 0 )_+. _ / ,
Ox + Oy = R-_

F(W)
P_'_+ P a(W) = puv F(W) = a(W) '

F(W) = puv _v2+ P '
(E + p)u E + p)v (7)

( o o
( - I

_ s(w)= I _ _ i '
I 7_ Oel

u_-_+ v_..+ P--7o-7 , \
p=(3'-I)(E-_p(u 2+v2) , e=C,,T=_-_(u 2+v2) ,

where 7 = 1.4 is the ratio of specific heats, T is the temperature, # and _; are the normalized viscosity

and thermal conductivity coefficients. The components of the Cauchy stress tensor rxx, r_ and r_

are given by:

) ( )2 2

Re = poUoLo/#o is the Reynolds number and Pr = _oC7,/t¢o is the Prandtl number, where p0, U0, L0

and #0 denote respectively the characteristic density, velocity, length and diffusivity of the considered

flow. It is easily seen that, if the right-hand side is equal to zero, then we recover the Euler equations.

The inlet conditions are defined by the farfield flow. For Euler flows, we impose the slip condition
on the wall (V.g = 0), and for Navier-Stokes flows, on the wall, the no-slip condition (V = 0) and

the isothermal condition (T = Tb). The discretization is given by a mixed FEM/FVM formulation

[5], where the mesh is a finite-element type (triangles), on which we construct control-cells (FVM) in

order to solve the variational formulation of the equations, such as, for the Euler flows:



The computation of the fluxes, appearing in (8), between two cells, is managed by Roe's numerical

flux vector splitting in the domain, and by the Steger-Warming numerical flux vector splitting for the

farfield boundaries. The 2nd-order accurate scheme is obtained by the use of the MUSCL method

developped by van Leer [6]. We solve the discrete equations with non-linear relaxation algorithms
[6], namely here the multistage Jacobi algorithm [2, 7]:

WJ °) = W_

For ks -- 1 to nstage

r )1
w(,"÷"= wl°) E D-'- ,o [ ],,j¢(w7,

ieKO)

Wja+l _. w(nsta#e)

(9)

Let us now look at the meshes. We start with an initial given fine mesh Fig.l.a. Finer meshes are

a. Initial 800 nodes b. 3114 nodes
c. Finest 12284 nodes

Figure 1:NACA0012 fine meshes.

obtained by triangle subdivision (Fig.l.b,.c). Then, we use a coarsening algorithm due to Guillard

[8] to build coarser meshes, from the initial one. This produces a sequence of node-embeded meshes

(Fig.2.a,.b,.c). We get 6 meshes for the NACA0012 profile, where the finest has 12284 nodes and the

coarsest 19 nodes. This method allows us to keep the mesh size ratio close to 2, and a comparable

local mesh aspect ratio. The intergrid transfer operators [9] are linear interpolations, concerning the

variables and the corrections, and linear distributions, concerning the residuals. The MG algorithm

will be the W-cycle, because it is the natural extension of the ideal-2-grid scheme. Furthermore, there
exist several ways to obtain 2nd-order accurate solutions:

• Mavriplis [101 uses an FMG algorithm, where lst-order accurate solutions are computed on the

coarse levels, and 2nd-order accurate on the finest. Some experiments with our upwind schemes
showed us that the convergence speed is hardly independent of the mesh size.
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a. 223 nodes b. 67 nodes

Figure 2:NACA0012 coarse meshes.

c. Coarsest 19 nodes

• Hemker-Koren [11] propose to get a lst-order solution with an FMG strategy and then to

compute a certain number of DeCV-cycles: He uses the Defect Correction (DEC) algorithm

[12], in order to solve the 2nd-order accurate following problem: _'2(W) = S. It is written:

7,(w') = s,
(I0)

,yl(W Iv+')=._'l(w N)-.T2(W N)+S, N = 1, 2, ...

Actually, we define the DeCV-cycling method where the lst-order problem in (10) is approxi-

mately solved with one V-cycle. However, we do not know how many DeCV-cycles are to be

performed and we loose the O(N) complexity.

We propose here two different methods in order to obtain 2nd-order accurate solutions with an O(N)

complexity algorithm [1].

• FMDeCV is an FMG strategy where we use DeCV-cycles in each phase, with two Jacobi sweeps

per level (FMDeCV-2RK1).

• FMG2 is an FMG strategy where we use on each level of the different phases the good damping

properties of the multistage schemes (see [13]) for smoothing directly the second order accurate

problem.

A result of convergence of the DeCV method is given in [14] and assures that DeCV-cycling has a

convergence speed independent of the mesh size:

IIDeCYu_-fZ2hl[ < $2 [[u_-fi_[[ , $2 = $1 + SISD,c + SD,c < 1 (11)

where DeCVu_ is the a - th iterate of the DeCV-cycling and fi_ is the solution of the 2nd-order

accurate problem.
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Remark: Desideri-Hemker in [12] show that the convergence speed SDeC of the DeC process is at

least equal to 1/2. From (ll), we should use MG lst-order accurate algorithms whose convergence

speed $1 (independent of the mesh size) is less than 1/3. Actually, the experiments showed us that

$1 > 1/3 does not induce difficulty.

3

3.1

SECOND ORDER ACCURATE RESULTS

Euler Flows around a NACA0012 profile
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a. Mesh Independence
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d. 67 nodes

b. FMG Convergence

Contours interval: 0.50000E-01
Min./Max. Math 0.39513,1.4854

e. 223 nodes

Figure 3: Euler FMG2 phases, isomach contours, M_ = 0.9, a = 0 °.
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Figure 4: Euler FMG2 phases, isomach contours, Moo = 0.9, a = 0 °.

The test-case depicted on Fig.3 to Fig.5 is defined by a farfield Mach number equal to 0.9, and

a zero angle of attack. The smoother is the (4 stage) RKJ one, whose coefficients (al = 0.14, a2 =

0.2939, a3 = 0.5252, a4 = 1) are due to van Leer [15], and defines the FMG2 strategy. On Fig.3.a,

we present the convergence histories of the logarithm of the residual versus the number of cycles in

each phase. The convergence is estimated as obtained when the residual decrease reaches 10 -6 . The

first history is a 1-grid convergence on the coarsest mesh (19 nodes), the last (4-grid scheme) on the

800 node mesh. At the end of the convergence of each phase we produce an initialization of the

next phase by interpolating the solution on the next finer mesh. We may notice that the different

convergence histories tend to be straight lines with the same value of slope: this allows us to say that

the convergence speed is independent of the mesh-size and that we may use an FMG strategy. On

Fig.3.b the residual convergence histories of the last 5 phases are depicted (the first one is a 1-grid

convergence history with a residual decrease equal to 10-6). In order to neglect oscillatory non-linear

phenomena we choose to impose a residual decrease equal to 1/8 (and not a defined number of cycles):

the FMG convergence histories follow exactly the peaks of the (corresponding) phases on Fig.3.a, and,

the solutions are not either changed. A solution on the finest grid (Fig.l.c) is reached after only 5

cycles (77 WU, 673 s on Convex C210 with non vectorized software). In Fig.3 and Fig.4 we show the

different solutions obtained at the end of each phase: they are non-symmetrical solutions (Fig.3), due

to the fact that the coarse meshes are non-symmetrical. However, this phenomenon vanishes when

the different meshes become symmetrical (Fig.4). Another important remark is that the solution

between the finest mesh and the next coarser one does not vary much: we may say that we get a

nearly converged solution on the 3114 node mesh. In order to verify the previous assumption, we

compare the FMG solution of Fig.5 with the solution obtained after a 10 -6 residual decrease: the

Mach number extrema are approximately the same although the isomach lines are a little bit more

oscillatory for the FMG solution.
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Figure 5: Euler FMG2 solutions, isomach contours, Moo = 0.9, a = 0°.

3.2 Navier-Stokes Flows around a NACA0012 profile

The first test-case is defined by a farfield Mach number equal to 0.8, an angle of attack equal to 10

degrees and a Reynolds number equal to 73. We use here an FMDeCV-2RK1 strategy (justifed by

the mesh independent convergence of Fig.6.a). The solution (Fig.6.c) is obtained on the finest mesh

after 4 cycles that represent 42 WU computation and a total CPU time equal to 537 s. In Fig.6.d we

illustrate the behavior of the pressure lift, CL (drag,CD) coefficient with a solid (dash) line, versus

the number of finest-grid iterations, up to a residual decrease on the finest grid of 10 -1_. The points

(cross) represent these coefficients during the FMG process, thus up to a 0.125 residual decrease. We

can notice that the value of each of them is almost obtained at the end of the FMG phase (the error

is equal to 64.10 -s for the CL coefficient and to 16.10 -5 for the CD coefficient).

The second test-case, presented in Fig.7, is defined by a farfield Mach number equal to 2, an angle

of attack equal to 10 degrees, and a Reynolds number equal to 106. This time we use an FMG2

strategy (more robust than FMDeCV-2RK1 that needs TVD limitation and implies that the residual

stalls from the value of 10-3); this produces a solution after 7 cycles (Fig.7.c, 109 WU, 1862 s), and

we can make the same remarks as in the previous test-cases. The next coarser mesh results in CL

and CD values within 1% of their final values which are obtained after 7 cycles on the finest mesh

with a related error respectively of 2.10 -s and 2.10 -5 (Fig.7.d),

The last test-case shows us one limitation of this method. It is defined by a farfield Mach number

equal to 0.8, an angle of attack equal to 10 degrees and a Reynolds number equal to 500. Here again,

we use an FMDeCV-2RK1 strategy (Fig.8). We may note, once again, that the FMG convergence

histories (Fig.8.b) look like the corresponding peaks on Fig.8.a, thus we think that the solution does

not vary between a l0 -1 residual decrease and a l0 -6 one. However, on Fig.9.a we note that the

isomach lines are deformed up untill the last solution (Fig.9.c) which presents two bumps. Actually,

since the solution differs a lot between the one obtained on the finest mesh and the other on the

8
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Figure 6: Navier-Stokes FMDeCV-2RK1 solution, Moo = 0.8, c_ = 10 °, Re = 73.
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next coarsermesh (Fig.9.c and .b), we may say that we did not obtain a grid-convergedsolution.
Furthermore, thesetwo humpsmay bejustified becausethe meshesthat weuse(especiallythe coarse
ones)arenot adaptedfor suchaviscousflowand maynot capturetheboundary layer. Our assumption
is confirmedby the CL and CD behaviors(Fig.10.b), wherewe note an error for the CL coefficient
equal to 5.10-2 and for the CD coefficientequal to 8.10-3. Moreover, we get a solution (Fig.10.a)
after 105cycles(1107WU, 14112s), for a residualdecreaseof 10-12and which tends to confirm that
the FMG solution is not a steadysolution.

o

It .... M = 0_8Re_25001%10_ I

_._. M=0.SRe= 731= 10--.]
, ..............
I _\ ". M=2.0Re= 106I= 10m[
' %'" I

_i_ ° .

I

2'0 4"o io 16odo

Figure 11: Convergences

4 CONCLUSION

We want to point out that the use of FMG2 or FMDeCV strategy allowed us to get 2nd-order accurate

solutions in most of cases with a limited number of operations (O(N) complexity). FMDeCV-2RK1

is more adapted to smooth problems and costs half as much as FMG2. Furthermore, we had to use an

entropy correction technique [16] to get the above results, and occasionally a 10 -a2 residual decrease

required to increase the value of this correction to prevent the residual from stalling or to improve

robustness on the finest grid (this increased slightly the number of cycles in each phase without

changing the solution greatly). As depicted in Fig.1 l, these types of computations do not induce any

stall during the convergence. The main two difficulties, non-embeded meshes and the requirement of

2nd-order accuracy, were remedied, respectively, by using a coarsening algorithm based on a Voronoi"

technique, and basic iteration techniques that were sufficient smoothers. The difficulty encountered in

using an FMG strategy, with our meshes, increased as the Reynolds number was raised. Actually, it

is obvious that our meshes are not adapted to these computations and that boundary layer problems

will need the production of stretched meshes and different specialized smoothers, as suggested in [14].
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